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Introduction:

Autonomous vehicles are transforming modern transportation by integrating advanced
computing, perception, and control technologies. However, achieving real-time,
reliable perception and decision-making on low-power edge devices remains a
significant challenge, particularly in urban environments with dynamic obstacles and

complex road conditions.

This paper presents the development of a compact, real-time autonomous driving
system with integrated lane detection and object detection capabilities. Leveraging the
NVIDIA Jetson Nano as the primary processing unit, the system combines YOLO-
based object detection with OpenCV-powered lane segmentation to ensure robust
navigation and traffic rule adherence. The proposed setup demonstrates efficient
performance under constrained computational resources, making it suitable for

scalable deployment in intelligent transportation systems.

The block diagram represents the architecture of an autonomous vehicle system,
showcasing the interaction between hardware components. Below is the description of

the parts illustrated in the diagram:
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Figure 1: System Block Diagram

this project focuses on designing an embedded system architecture optimized for
resource-constrained environments, integrating advanced lane-keeping and object

detection algorithms. A hardware-in-loop (HIL) setup is employed to rigorously
validate system performance in simulated real-world conditions
Objectives:

1. To Develop Embedded System architecture for autonomous drive and
control.

2. To Develop algorithms for Lane Keeping, Object detection and compliance
to traffic signs.

3. To Evaluate with Hardware-in-Loop (HIL) setup in real world conditions.
Methodology:

The development of a robust vision architecture for autonomous driving was
approached through a modular and systematic methodology, integrating hardware
design, software development, and validation techniques. This section outlines the key
steps undertaken to achieve real-time lane-keeping, object detection, and traffic
compliance on a resource-constrained embedded platform, the NVIDIA Jetson Nano
4GB.
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1. System Architecture Design

The system architecture was designed to balance computational efficiency with real-
time performance. The Jetson Nano 4GB served as the central processing unit,
interfacing with a Waveshare IMX219 camera (120° FOV) for visual input and HC-
SR04 ultrasonic sensors for proximity detection. A lightweight chassis was constructed
to house four geared DC motors, controlled via an LN298 motor driver, ensuring
precise propulsion and maneuverability. Power distribution was managed using a 5V
5A barrel jack adapter to maintain stability under variable loads. The architecture was
optimized for modularity, enabling seamless integration of sensory inputs and control

outputs while adhering to the constraints of an embedded environment.

2. Object Detection Pipeline
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Figure 2: Flowchart for Detection
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A comprehensive object detection pipeline was developed to process environmental
data in real time, as illustrated in Fig. 3.1 of the project report. The pipeline comprises

the following stages:

Input Processing: High-resolution video streams from the IMX219 camera were
captured and resized to 448x448 pixels, normalized to a [0, 1] range, and converted

to grayscale where necessary to ensure compatibility with downstream algorithms.

Preprocessing: Noise reduction was achieved using Gaussian blurring, followed by
data augmentation (e.g., random scaling and flipping) to enhance robustness against

environmental variations.

Feature Extraction: Convolutional Neural Networks (CNNs) within the YOLO (You Only
Look Once) framework extracted multi-scale features, identifying edges, shapes, and

textures critical for object recognition.

Bounding Box Prediction: YOLO predicted bounding boxes with confidence scores,
leveraging a grid-based approach to localize objects such as traffic signs and

obstacles.

Post-Processing: Non-Maximum Suppression (NMS) was applied with a 0.5

confidence threshold to eliminate redundant detections, refining outputs for accuracy.

Object Classification: Detected objects were classified into categories (e.g., stop signs,

pedestrians) with associated probabilities, enabling traffic-compliant decision-making.

The YOLO model was fine-tuned on a custom dataset of annotated road scenarios,
achieving real-time inference speeds of approximately 2300 ms per frame on the
Jetson Nano, optimized via NVIDIA’s TensorRT.

3. Lane Detection and Keeping

Lane detection was implemented using OpenCV, following the flowchart in
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Figure 3: Flowchart for Lane Detection using OpenCV

Edge Detection: Canny edge detection identified lane boundaries with thresholds

tuned for robustness against illumination changes.

Perspective Transformation: A bird’s-eye view was generated to simplify lane

geometry analysis, using a homography matrix calibrated for the camera’s FOV.

Region of Interest (ROI) Masking: The lower half of the transformed image was isolated

to focus computational resources on relevant lane areas.

Hough Transform: Straight-line detection extracted lane markings, with parameters

adjusted to handle curved lanes via polynomial fitting.
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Figure 4: Flowchart for Lane Keeping

employed predictive control to adjust motor speeds via the LN298 driver, ensuring the
vehicle-maintained alignment with detected lanes. Feedback from real-time sensor

data corrected deviations, achieving stable navigation in controlled tests.
4. Hardware-Software Integration

Hardware components were assembled on the chassis, with the Jetson Nano running
Ubuntu 18.04 LTS and NVIDIA JetPack SDK for GPU acceleration. Python scripts
orchestrated sensor interfacing, algorithm execution, and motor control. The YOLO
model was deployed using PyTorch, while OpenCV handled image processing tasks.
Ultrasonic sensor data was synchronized with visual inputs to enable obstacle

avoidance, halting the vehicle when objects were detected within 30 cm.
5. Validation via Hardware-in-Loop (HIL)

The system was validated using a Hardware-in-Loop (HIL) framework to simulate real-
world conditions. Test scenarios included lane-following, traffic sign recognition (e.g.,

48" Series Student Project Programme (SPP): 2024-25 — Synopsis of the Project 6



"STOP," "Speed Limit 30"), and obstacle avoidance in a controlled environment.
Iterative testing refined algorithm parameters and hardware synchronization,
addressing issues like false positives and latency. Performance metrics—detection
accuracy (98% for traffic signs), lane-keeping precision (95% alignment), and response

time (under 2500 ms)—were recorded to confirm reliability.
6. Optimization and Scalability

Resource optimization was prioritized to suit the Jetson Nano’s constraints. Algorithm
complexity was reduced by pruning non-critical YOLO layers, and memory usage was
minimized through batch processing of sensor data. The modular design facilitates
scalability, supporting future enhancements like LIDAR integration or multi-sensor

fusion.

This methodology leverages cost-effective hardware and efficient algorithms to deliver
a practical autonomous driving solution, validated through rigorous HIL testing, making

it a viable candidate for real-world applications in urban mobility and beyond.
Result and Conclusion:

By switching from YOLOv4 to YOLOvVS8, the system’s object detection accuracy
improved noticeably—from 82% to 96%. The newer version handled edge cases better
and gave more reliable results, especially when identifying traffic signs and obstacles.
This helped reduce misdetections and made the system more stable during real-time
operation. Combined with the lane detection and motor control setup, the overall
performance of the autonomous vehicle was smoother and more responsive. The
upgrade also made better use of the Jetson Nano’s resources, showing that even with

limited hardware, solid results can be achieved with the right optimizations

Figure 5: Final Model
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Figure 6: Lane Detection Output

Figure 7: Traffic Light Detection

In conclusion, the development of this autonomous vehicle system demonstrates
significant strides in addressing the core challenges of real-time detection, lane-
keeping, and object recognition on resource-constrained embedded platforms. By
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leveraging the Jetson Nano 4GB as the computational backbone, the system
achieves a delicate balance between performance and efficiency. The integration of
components such as the HC-SR04 ultrasonic sensors and Wave share IMX219
camera ensure robust environmental perception, while advanced algorithms like

YOLO enhance object detection capabilities.

Through the hardware-in-loop (HIL) testing framework, the system has been
evaluated for reliability under controlled yet dynamic conditions, showcasing its
potential for real-world deployment. This project bridges critical gaps in autonomous
driving technology, particularly in areas such as cost-effective implementation,
energy efficiency, and adaptability to varying environmental conditions. While
achieving these objectives, the project also provides a practical framework for future
research and development, contributing to the broader vision of autonomous

mobility and intelligent transportation systems.
Future Scope:

The autonomous vehicle system developed in this project provides a strong
foundation for real-world automation. Future enhancements could focus on dynamic
path planning and adaptive decision-making, enabling the system to navigate more
complex environments with unpredictable traffic patterns and obstacles. Advanced
reinforcement learning techniques and real-time map data integration can help

optimize routes and improve overall efficiency and safety.

The future scope of this project includes:

1. Expand sensor suite with LIDAR and radar to provide increased perception
accuracy and redundancy.

2. Increase detection in adverse weather and poorly marked roads.

3. Detect smaller objects, such as pedestrians or cyclists.

4. Incorporate Vehicle-to-Everything (V2X) communication for seamless
interaction with infrastructure and vehicles.

5. Safety and traffic flow in smart city environments.
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