DESIGN AND DEVELOPMENT OF A VACUUM-ASSISTED MULTI-CROP DRYER UTILIZING LIQUID CONVECTION AND RADIATION FOR ENHANCED PRODUCT QUALITY

Project Reference No.: 48S_BE_3028

College: Coorg Institute Of Technology, Kodagu Branch: Department Of Mechanical Engineering

Guide: Prof. Rajesh T N Student(S): Ms. Likitha K U

> Ms. Chondamma K T Mr. Muddappa M M Mr. Somashekhar R J

Keywords:

- 1. Vacuum-Assisted Continuous Drying
- 2. Multi-Crop Rotary Dryer
- 3. Sustainable Drying
- 4. Energy-Efficient
- 5. Radiation Heating

Introduction/Background:

This project designs a vacuum-assisted multi-crop dryer that integrates electrical and biomass heating for efficient and sustainable moisture removal. The system utilizes a vacuum environment to facilitate moisture extraction at lower temperatures, preserving crop quality.

Key features include:

- 1. Rotary drum mechanism for uniform heat distribution
- 2. Sensor control unit for precise temperature, pressure, and moisture regulation
- 3. Sustainable energy sources like electrical or biomass heating

Objectives:

- 1. Design and develop a vacuum-assisted multi-crop dryer that integrates electrical and biomass heating.
- 2. Improve crop quality and reduce drying time by utilizing a vacuum environment and precise temperature control.
- 3. Enhance energy efficiency and eco-friendliness by incorporating sustainable energy sources.
- 4. Develop an sensor control unit for precise regulation of temperature, pressure, and moisture levels.
- 5. Provide a versatile solution for drying various crops, reducing post-harvest losses and increasing farmer income.
- 6. Evaluate the system's performance and compare it with conventional dryers in terms of drying rate, energy efficiency, and product quality.
- 7. Optimize the system's design and operation for scalability and adaptability to different farm sizes and crop types.

Methodology:

- 1. Design and simulation: Utilize design software to design the vacuum-assisted multicrop dryer.
- 2. Material selection: Select suitable materials for the dryer's construction, considering factors such as durability, corrosion resistance, and thermal conductivity.
- 3. Prototype development: Fabricate a prototype of the dryer, incorporating the designed components and systems.
- 4. Testing and evaluation: Conduct experiments to evaluate the dryer's performance, including drying rate, energy efficiency, and product quality.
- 5. Data analysis: Analyze the collected data to identify areas for improvement and optimize the system's design and operation.

Project Outcome & Industry Relevance:

Energy-efficient dryer suitable for diverse crops.

Reduction in post-harvest losses and extension of shelf life.

Eco-friendly system with renewable energy integration.

Improved crop quality with enhanced texture and nutritional value.

Affordable, low-maintenance design for farmers.

Economic benefits: increased farmer income and job creation.

Scalable design adaptable to varying farm sizes.

Contribution to agricultural best practices.

Working Model vs. Simulation/Study:

Fig 1: Conceptual design

Fig 2: Development of Design, (a) Inside view (b) ISO front view

Future Scope:

The vacuum-assisted multi-crop dryer represents a significant advancement in agricultural technology. By integrating biomass and sustainable energy, the system offers efficient drying, quality preservation, and eco-friendly operation, benefiting farmers and contributing to sustainable practices.