GENERATION OF POWER, EXTRACTING MAXIMUM POWER FROM URINE WASTE THROUGH MICROBIAL FUEL CELL

Project Reference No.: 47S_BE_5330

College : Presidency University, Bengaluru

Branch : Department of Electrical and Electronics Engineering

Guide(s) : Mr. Bishakh Paul Student(S) : Mr. Kushal R

> Mr. Ramegowda K T Mr. Charan Reddy S V Ms. Hamsa Shree R

Ms. Fiza

Keywords:

Microbial Fuel Cells (MFCs), Renewable Energy, Urine Utilization, Bioelectrochemical Systems, Sustainable Power Generation

Introduction:

1. To Estimate and Maximize the Voltage output of Microbial Cells

With urine serving as a renewable substrate, the thesis project's goals center on maximizing power generation efficiency through a variety of microbial fuel cell (MFC) technologies.

- 2. To determine the effect of Cell Configuration and Electrode Materials for generation of power through microbial fuel cells
- Determining the impact of electrode materials and cell architecture on the generation of power in microbial fuel cells is another goal.
- The effects of various electrode materials (such as metal alloys and carbon-based materials) and cell designs (such as single- and dual-chamber cells) on MFC performance will be assessed through experimental research.
- Efficient electron transfer kinetics and total power production can be improved by identifying the best electrode materials and cell layouts.
- 3. To develop and commercialize urine-based microbial fuel cell technologies by fusing theoretical insights with experimental data
- The ultimate goal is to create useful suggestions for enhancing the performance of microbial fuel cells based on theoretical understanding and experimental results.
- This involves putting forth creative ideas to improve the efficiency of the system, microbial activity, and substrate use.
- The development objective places a strong emphasis on turning research findings into practical suggestions for MFC use, operation, and design.
- This mission is to support the development and commercialization of urine-based microbial fuel cell technologies by fusing theoretical insights with experimental data.

Objectives:

- The main goal of this study is to determine whether employing microbial fuel cells to produce power from urine is feasible and effective.
- Among the specific objectives are:
- Determining the best materials and electrode layouts for MFCs.
- Evaluating how urine content affects MFC efficiency.
- Assessing the practical use and scalability of urine-powered MFCs.
- Examining the socioeconomic and environmental advantages of using MFCs for wastewater treatment and decentralized electricity generation.

Methodology:

- Materials and Construction: Graphite and carbon cloth are two examples of the materials chosen for the electrode. Building MFCs with two chamber arrangements.
- Microbial Inoculation: To start the metabolic processes, electrochemically active bacteria are injected into MFCs.
- Urine Collection and Preparation: Gathering urine samples from different sources while making sure that its composition is consistent.
- Experimental Setup: assembling electrical circuits to detect voltage and current outputs, and configuring MFCs under controlled circumstances.
- Data collection: To track performance over time, temporal analyses are performed after electrical outputs are recorded using digital multimeters.
- Optimization: Increasing power generation by modifying parameters including pH, temperature, and flow rates.
- Analysis: Deciphering information to spot patterns and tweak settings for maximum effectiveness.

Result and Conclusions:

- The composition of the urine and the materials used for the electrodes were shown to have a substantial impact on the voltage output variability.
- Particular pH values and electrode arrangements were found to be ideal for optimizing power production.
- The findings showed that human urine could efficiently power MFCs, suggesting possible uses for this technology in off-grid energy systems.
- There was discussion of issues including limited power output and the stability of microbial communities, which suggests more research in these areas.
- The project's conclusion is that, although urine-powered MFCs show promise, actual deployment will require advances in microbial engineering and materials science.

Scope for Future Work:

 Prospects for Future Research: By using biofilm engineering and novel electrode materials, future research should concentrate on improving MFC efficiency.

- The reliability and total energy output of MFC integration with other renewable energy sources, such solar and wind, may be enhanced.
- Investigating the techno-economic viability of urine-fed MFCs and conducting long-term studies on their stability and scalability are crucial.
- Working together with business and legislators will be essential to resolving regulatory obstacles and encouraging the use of this technology.
- Furthermore, examining hybrid systems and resource recovery techniques will solidify MFCs as an environmentally friendly option for waste management and energy production.