

KARNATAKA STATE COUNCIL FOR SCIENCE AND TECHNOLOGY

Indian Institute of Science campus, Bengaluru

Telephone: 080 -23600978, 23341652 || Email: spp@kscst.org.in Website: www.kscst.iisc.ernet.in/spp.html or www.kscst.org.in/spp.html

SYNOPSIS

1.	Reference no: 46S_BE_2140
2.	Project Title: "MANUAL OPERATED MULTI-PURPOSE POWER TROLLEY"
3.	Name of the college: VIVEKANANDA COLLEGE OF ENGINEERING AND TECHNOLOGY, PUTTUR
4.	Department: Mechanical Engineering
5.	Name of project guide: 1. Dr. MANUJESH B J
6.	Name of the Team Members:
	1. ABHISHEK (4VP19ME001)
	2. SATHMANI (4VP19ME035)
	3. SHAMANTH G (4VP19ME036)
	4. SHARATH KUMAR K (4VP19ME037)
7.	Team Leader of the Project: 1. SATHMANI
8.	Keywords:
	Multi-purpose trolley, Creativity Techniques, Lift and Tilt, Innovation
9.	Introduction:
	As we know most of India's population depends on Agriculture. And Farmer is the backbone of
	our country. In our area areca nut, coconut is the major crop. One of the major problems
	associated with agriculture is the lack of labors. Due to this many young farmers are will quit
	farming and migrate to cities. During harvesting of areca nut, areca nut is to be transported
	from plantation to the place of storage. Since lack of labors, farmers will be facing difficulties.
	Many mini trolleys are available in market, but those trolleys will no satisfy required condition
	and cannot be 100 % efficient. In order to solve these problems, we have developed a design
	and fabrication of multi-purpose power trolley. We can find some trolley in market where it has
	some of the disadvantages. In this we have used two-wheeler engine which has more power

	compared bother trolley. We have designed it in a condition so that it can easily move in the
	middle of plantation. It also has gear system, by which it can get more power. It also has good
	mileage it will give up to 35 km / litter of petrol. We introducing new tilting mechanism in this
	trolley it is reduce the man power and good benefit of farmer. It can travel in muddy, intricate
	places. This trolley is mainly focused on low cost, easy to operate. This trolley is design for
	different application like agriculture, Transport, Industry.
10.	Objectives of the project:
	As we find different problem in Agriculture filed, transport, construction, so we study different
	literature review, according to give the object for our project. Also, by using existing
	components in feasible area. By using modern technology, efficient and light weight.
	To Design, Develop and fabricate a trolley adopting innovation to serve multi purposes.
	 To assist in lifting domestic and industrial loads.
	To adopt & adjust suitably to meet wide range of applications.
	◆ To ease the farming activity and enable ladies and old aged people to effectively use
	the machine.
11.	Methodology:

MATERIAL	ALLOWABLE STRESS MN/m^2	BHN	
CAST IRON GRADE 20	47.1	200	
MILD STEEL	210	300	
WODZINC DDI	NCIDI E.		
		M 11	. 1 1
Working principle	of trolley is simple	e. Manually oper	ated multi-purpose power troll
constructed as show	n in the fig. Initially	y we have to load	the trolley and move to the pla
destination. And the	n we have to unloc	ck the back door	of tray. And then we have lifte
scissor arm in the he	elp of hydraulic jack	k up to unloading	High. After lift the scissor arm,
help of yoke discor	nnect the bucket lo	ock then unloadir	g the material. After unloading
bucket, we have to	apply downward pr	essure to bucket	hen bucket will be comes down
settle on the upward	chassis of trolley.	Then we release t	he scissor arm to initial position
the help of hydrauli	c jack. The process	is repeated for n	ext loading and unloading. Sinc
used the engine, the	braking system, and	l gear system of bi	ke.
Result:	an he discussed as th	he design process	is completed
• The results ea	un de discussed as u	ne design process	is completed.
✤ Farmers and	industrial people car	n have a better and	1 simple mechanism which is les
energy for lo	ading and unloading	g objective withou	t any labor.
It is better the	an existing model be	ecause of its loadi	ng and unloading performance.
• We design th	e trolley up to 100 t	o 200 ka oftan oor	unlation of project trollow is con-
• we design th	e noney up to 100 t	0 200 kg alter cor	inpletion of project itoliey is capa
of lift and tilt	ing the object up to	150kg.	
✤ This machine	e lifts up to 3ft to 4ft	t for load carrying	vehicle it adopts and adjusts
different app	lication.		
Dosign & He	and Calculation		
Capacity of H	Bucket, Volume = L	*B*H	
	V = 1219.2*762*1	52.4	
	V = 141,584,232.9	6mm ³	
	$V = 0.142m^3$		
Volu			
v olul	ne = 0.142*1000		

	Scissor Calculation						
	AB = CD = 1200mm BG = DH = 900mm						
	$\sin\theta = BG/AB$						
	$\theta = 48.59^{\circ} = 50^{\circ}$						
	AE= 300mm						
	AE*sin50= EF						
		EF= 230mm					
		JI= 1200mm					
13.	Conc *	lusion: Hydraulic scissor lift is designed for high load resistance. Although there is serval					
		machine available for agriculture, most of the trolley is applicable only for one					
		application.					
	*	The existing model is costly compare to new model.					
	*	The old machine is required labor but our new innovation is easily operated by old age					
		people and women by using less effort.					
	*	Our machine is capable for industry, transport, construction, agriculture etc.					
	*	For the given dimensions the scissor lift can lift a load in the range of 150 kg up to the					
		height of 915 mm.					
14.	Scop	e for future work:					
	\succ	Lifting system of trolley can be changed by replacing jack system with hydraulic					
		system, which will be very easy to lift but cost of the dumper increases.					
	\succ	In this trolley we have only one door in the tray, we can give extra two doors on the					
		sides of tray by which it is easy to load and unload.					
	\succ	In this trolley there is no any seat arrangement we walking with trolley, in future we					
		decide to make a seat arrangement.					
		In future we automatically control the trolley in IoT based mechanism.					