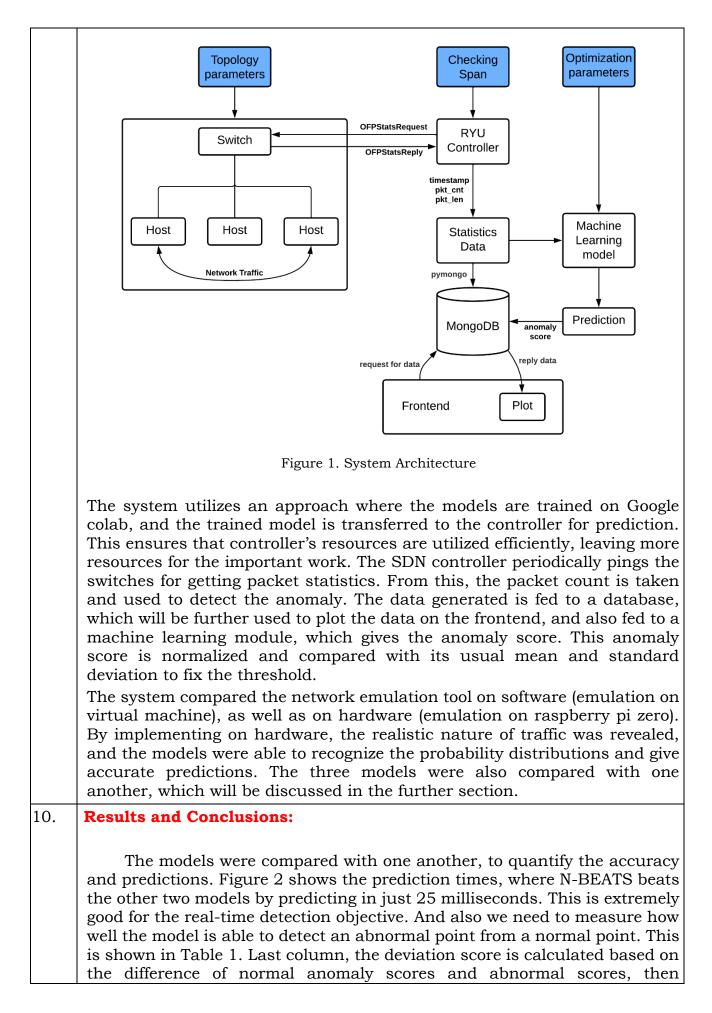
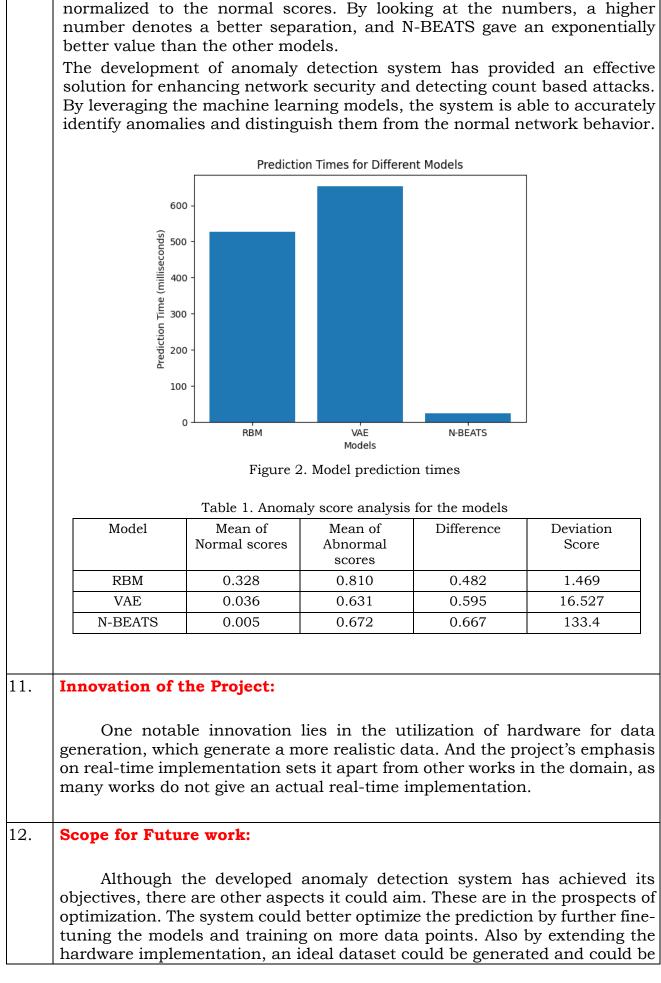


KARNATAKA STATE COUNCIL FOR SCIENCE AND TECHNOLOGY

Indian Institute of Science campus, Bengaluru

Telephone: 080 -23600978, 23341652 || Email: spp@kscst.org.in Website: www.kscst.iisc.ernet.in/spp.html or www.kscst.org.in/spp.html


46th SERIES OF STUDENT PROJECT PROGRAMME


SYNOPSIS

(46S_BE_3815)

1.	Title of the Project: Adaptive Anomaly detection system for Software Defined Networks
2.	Name of the College: RV College of Engineering
3.	Department: Computer Science and Engineering
4.	 Name(s) of Project guide(s): 1. Name: Prof. SNEHA M Email id: sneham@rvce.edu.in Contact No.: 8792834722 2. Name: Dr. ASHOK KUMAR A R Email id: ashokkumarar@rvce.edu.in Contact No.:8497042779
5.	Name of the Student(s): Name: KEERTHAN KUMAR A Email id: keerthankumara.cs19@rvce.edu.in Mobile No: 9110824698 Name: OMPRAKASH Email id: omprakash.cs19@rvce.edu.in Mobile No: 8884748321 Name: MOHAMMED ZAID SIKANDER Email id: mohammedzaids.cs19@rvce.edu.in Mobile No: 9945493556
6.	Keywords: Software Defined Networks, Ryu Controller, Mininet, Machine Learning, MongoDB
7.	Introduction/Background:

	Software Defined Networking has changed the way switches work, and industries have started adopting it. The work leverages the architectural advantages of SDN to detect count based attacks like DoS, in real-time, by utilizing machine learning models like Restricted Boltzmann Machine (RBM), Variational Auto Encoder (VAE), and Neural Basis Expansion Analysis for Time Series (N-BEATS). Traditional networks had to be monitored on every critical point, for such attacks, but with SDN only the centralized controller needs to be used to detect such attacks. The existing works rely on some networking dataset, or use a simulated one. Using simulated data guarantees the working for changing network scenarios. Some have employed a dynamic threshold, since the network statistics keep changing over time. But most of these fail to give an actual real-time detection implementation, which is what this project aims to accomplish. Also none of the works have used any sort of hardware to generate data. By utilizing hardware in one of the modules, realistic data is generated, that mimics the actual network. This ensures better results and prediction. By utilizing a sliding window technique, dynamic thresholding through Z-score and machine learning, the system can provide attack detection within the SDN architecture.
8.	Objectives:
	 The system should be able to detect DoS like attacks in real-time (less the one second) by analyzing traffic patterns of the incoming data. Here are the objectives laid out: Developing attack detection system based on SDN architecture Implementing a robust solution that can analyze network traffic in real-time Utilize machine learning to accurately distinguish anomalies from normal data Generation of dataset from network emulation and using that to train the model Provide a user-friendly frontend interface for visualizing network traffic patterns Optimize system performance to handle large-scale networks Enable adaptability to changing network environments Facilitate control of the system from a single point
9.	Methodology:
	The architecture of the system is shown in Figure 1. Blue boxes indicate inputs to the system. There is a topology setup on the network emulation tool, which consists of a single switch and multiple nodes connected to it. Nodes transfer data to other nodes through the use of some tools. Majorly three kinds of traffic were focused on: video streaming traffic, file transfer traffic and http web traffic. Having multiple kinds of traffic ensures the realistic nature of the data and helps the models to adapt to real-life adaptations easily.

published as a public dataset; as there is only one dataset that is there in this domain.

The dataset available now (InSDN) has a limitation that it was generated entirely using virtualization. The authors also mention the same, and also state that better results could be achieved by using a hardware generated data. This can be aimed to accomplish in the future work extending this project by investing time and using more physical resources.