
KARNATAKA STATE COUNCIL FOR SCIENCE AND

TECHNOLOGY

46S_BE_4171

IMPLEMENTATION OF AES 256 ENCRYPTION

USING FPGA

COLLEGE: Rajarajeswari College of Engineering

DEPARTMENT: Electronics and Communication

NAME OF TEAM MEMBERS

Name: TRIKALESHWAR S

Email id: trikaleshwarshankar@gmail.com

Mobile No.: 9148760407

Name: SWETHA S

Email id: shwethasrinivas999@gmail.com

Mobile No: 8431695711

Name: TEJAS I TELKAR

Email id: tejastelkar2001@gmail.com

Mobile No.: 9901331770

Name: THAKSHTIH B K

Email id: thakshithblk4871@gmail.com

Mobile No.: 9844731920

NAME OF THE GUIDE

Name: Dr. Vijaya S M

Email id: vijaya@rrce.org

Contact No.: 8867590051

KEYWORDS

Advanced Encryption Standard, FPGA, Area optimisation, Pipelined architecture, 256-Bit key,

Verilog, cyclic memory, multiplexing, Galois field multiplication.

INTRODUCTION

The Advanced Encryption Standard (AES) algorithm is one of the block cipher encryption

algorithms that was published by National Institute of Standards and Technology (NIST) in

2000. This algorithm was developed by two professional cryptographers Joan Daemen and

Vincent Rijmen. It represents a fundamental building block of many network security protocols

to ensure data confidentiality in various applications ranging from data servers to low-power

embedded systems. It finds applications in Mobile Phones, Smart Cards, Magnetism Cards,

Intel Core Processors Family, AutomatedTeller Machines (ATM), WWW servers, SSD

Devises, Ipsec and SSL Protocols, various other transmission protocols standardized by IEEE,

IEEE 802.11i WPA2 standard Wi-Fi networks for secure encryption and digital video systems,

etc., ensuring safety, security and reliability of data transmission. Implementation of AES

algorithm can be done either in software or in hardware. But most of the practical real time

applications prefer only the hardware implementation, since it is very fast, safe and highly

reliable for high-speed processing as compared to software implementation.

Advanced Encryption Standard (AES) algorithm is one on the most common and widely

used symmetric block cipher algorithm in the world wide. This algorithm has an own particular

structure to encrypt and decrypt sensitive data and is applied in hardware and software all over

the world. It is extremely difficult for hackers to get the real data when encrypted by AES

algorithm. Till date is not any evidence to crake this algorithm. AES has the ability to deal with

three different key sizes such as AES 128, 192 and 256 bit and each of these ciphers has 128-

bit block size. In this project we design hardware architecture and implement the Advanced

Encryption Standard (AES) algorithm based on the Field Programmable Gate Array (FPGA)

using High Level Language (HLL). This design is focused on the optimal usage of available

resources; thus, it minimizes the hardware resource utilization and area parameters at best of

our knowledge.

 The previous work on this topic includes using of different architecture which yields

better performances in terms of energy consumption or timing which relates to higher

throughput or the cost of overall production of the design.

OBJECTIVE

The AES-256 project has it’s main objective to reduce the area consumed after the design

synthesis, where the base paper referred to be around 64188 nm2. So as a effort to reduce the

same we have come up with a different approach to reduce the area but without considering

other parameter such as the timing (performance), the power consumption, the throughput or

even the accuracy but only the area parameter. We believe that when the major problem that is

area is solved; then the tradeoff can be optimized for power and performance. All this is

achieved by having a unique approach to the architecture used which eliminates the generation

of hardware multiple times which does performs the same function over and over. The result

of the same can be seen while implementing on the FPGA, there are flags which are designed

to check whether the designed architecture encrypts the given test data successfully or not. The

approach of saving is by using fewer always blocks and using case condition with defaults

which reduces the generation of unwanted D-Flip Flops. By following few other techniques

it’s possible to reduce the area in the design code and checking the same during synthesis.

METHODOLOGY

1) Byte Substitution

In this step each byte is substituted by another byte. Its performed using a lookup

table also called the S-box.

2)Shift Rows

This step is just as it sounds. Each row is shifted a particular number of times.

• The first row is not shifted

• The second row is shifted once to the left.

• The third row is shifted twice to the left.

• The fourth row is shifted thrice to the left.

3) Mix Column

This step is basically a matrix multiplication. Each column is multiplied with a

specific matrix and thus the position of each byte in the column is changed as a result.

4)Add Round Key

Now the resultant output of the previous stage is XOR-ed with the

corresponding round key.

HARDWARE COMPONENTS

Altera Deca Max

 512MB RAM (16-bit data bus)

 Micro SD card socket

 50K programmable logic elements

 1,638 Kbits embedded memory

 5,888 Kbits user flash memory

 Onboard USB-Blaster II (mini USB type B connector)

 2 push-buttons

 2 slide switches

 8 blue user LEDs

 5V DC input

 Note Pad ++

SOFTWARE

 Note Pad ++

Code editor

 EDA playground, Icarus

Open-source online tool for simulation of Verilog code.

 Quartus prime,

Interfacing of Altera max 10.

 Xilinx ISE

Compilation and testing of codes.

 Cadence

Licensed resource for simulation and reports.

ARCHITECTURE

Our architecture involves 3 techniques that’s concerns to optimize area. These

techniques are pipelining multiplexing and cyclic memory. Our inputs are clock reset 128 bit

of data 256 bits of key, and we have set of registers such as subkey_a, subkey_b each of size

256 bits, data_a of 128 bits, roundconstant of size 32 bits. And integer such as round and i.

Initially we move the key to register subkey_a and store value zero in round i and roundconstant

as reset condition. We predefine the function such substituted word, rotated word

,byte_sustitution, shift row, and mix column.

In key expansion block we make give round and i in our sensitivity list as everytime

there is any change in the senstitivity list it will carry out the function in that block.

Roundconstant are defined on bases of the current round. if round is zero or two or four or six

or eight or ten or twelve the process of driving subkey_b from subkey_a takes place. We of

integer I to specify the address location of each word in subkey_a to map with subkey_b after

undergoing operation defined in function such as substituted word, rotate word, adding round

constant of that particular round, depending upon the location of each word. here we use

multiplexing technique to make subkey_a to subkey b. We are reducing hardware.For example,

substituted_word hardware which was required 14 time in now reduce to 2 and rotated word

hardware which was required 8 time is reduced to 1’

In simple word subkey_a contains 2 sets subkeys and we deriver the next to subkeys

we specified in AES alogithum. The integer I with represent the word in each. Integer I guide

from which word of which subkey the next subkey must be derived with the help of multiplexer.

In the main block during round equal to zero we xor 1st 128 bits of subkey_a and Data

and store it in data_a. This data_a undergoes the operation specified in function byte

substitution, shift row, mix column then xor with the suitable subkey till the round is less than

13, and stored back in Data then the content of subkey_b is passed to subkey_a to maintain the

further key expansions carry out along the side with cyclic memory. After completion of all

this above process round is incremented by 1. When round is equal to 13 all the operation

specified above is carried out expect the mix column. When round is again incremented to 14

the Data is transferred to output chipper text and 1st half of subkey_a is transferred to output

sub_key14.

RESULT

DATA 00112233445566778899AABBCCDDEEFF

SECRET KEY 603DEB1015CA71BE2B73AEF0857D7781

1F352C073B6108D72D9810A30914DFF4

CIPHER DATA 146F2A291CB4798909A77836A60E3BC0

092A4AF9BA6704D751A38FE1B60F30DA

The above image shows that the result has been a success since all the 5 flags which were used

to check with the test data given was found true. This signifies that the algorithm has worked

in the right way as planned in the architecture. For additional verification the encrypted data

was decrypted on an online platform which yielded the data that was given as the input. This

way the re-verification of the algorithm was performed.

CONCLUSION

 AES 256 is considered one of the most secure encryption techniques currently available

due to its key size and multiple rounds of encryption.

 Throughout this project, we focused on reducing the area parameter while

implementing AES 256 on an FPGA.

 We were able to achieve this by developing our own architecture that streamlined the

design and optimized it and the estimated area consumed by our project as per the

results from the synthesis of Cadence EDA it was projected as 53802 with this, we can

benchmark with the paper we have referred and the later has obtained 64188 which is

a great reduction in the overall area used up in the design.

 However, the architecture is well designed to address the problem statement but still

this design needs a lot of analysis on the timing constraints and the test for any possible

glitches.

 There are still more possibilities to explore in area optimization or the other parameters

such as performance and power which will be a trade-off in the area or any one of the

other parameters if altered.

 Overall, this project has demonstrated the importance of encryption techniques such as

AES 256 in ensuring data security and privacy in today's interconnected world.

INNOVATION

There are ongoing research and developments in the field of cryptographic algorithms and

techniques that can enhance the overall security and performance of AES-256. Some potential

areas of innovation and improvement in AES-256 can include:

1. Side-Channel Attack Resistance: Side-channel attacks exploit information leaked

during the execution of an algorithm, such as power consumption or electromagnetic

radiation. Innovations can focus on developing countermeasures to mitigate side-

channel attacks and enhance the resistance of AES-256 against such attacks.

2. Hardware Acceleration: Innovations can be made in hardware implementations of

AES-256, such as optimizing the design for high-speed encryption/decryption or

developing specialized hardware architectures that provide better performance and

efficiency.

3. Quantum Resistance: With the advent of quantum computers, there is a growing need

for cryptographic algorithms that are resistant to quantum attacks. Innovations can

involve developing post-quantum variants of AES-256 or combining it with other

quantum-resistant algorithms to ensure long-term security.

4. Authenticated Encryption: AES-256 can be combined with authenticated encryption

modes, such as AES-GCM (Galois/Counter Mode), to provide both confidentiality and

integrity of the encrypted data. Innovations can focus on improving the efficiency and

security of AES-256 in authenticated encryption scenarios.

5. Secure Key Management: Innovations can be made in key management schemes, key

generation techniques, and key distribution protocols to enhance the overall security of

AES-256. This includes secure key storage, key rotation, and proper key usage policies.

FUTURE SCOPE

1. Post-Quantum Cryptography: With the rise of quantum computing, there is a need

for cryptographic algorithms that are resistant to quantum attacks. Future developments

may focus on exploring post-quantum variants of AES-256 or completely new

encryption algorithms that provide security against quantum adversaries.

2. Efficiency and Performance Optimization: Innovations can be made to improve the

efficiency and performance of AES-256 implementations. This includes optimizing

hardware designs, exploring new software algorithms, and leveraging parallel

processing techniques to enhance the speed of encryption and decryption operations.

3. Hardware Security: As hardware-based attacks and vulnerabilities continue to be a

concern, future research can focus on developing hardware security mechanisms to

protect AES-256 implementations from side-channel attacks, fault injections, and

tampering.

4. Secure Implementation Guidelines: Future work can involve establishing

comprehensive guidelines and best practices for securely implementing AES-256 in

various systems and platforms. This includes recommendations for key management,

secure coding practices, and secure integration of AES-256 into larger cryptographic

systems.

5. Integration with Emerging Technologies: AES-256 can be integrated with emerging

technologies such as blockchain, Internet of Things (IoT), and cloud computing. Future

research may explore how AES-256 can be effectively utilized and optimized in these

contexts to ensure secure data storage, communication, and processing.

6. Standardization and Certifications: Ongoing efforts can focus on the standardization

and certification of AES-256 implementations, ensuring interoperability, compatibility,

and compliance with industry and government security standards.

