PROJECT SYNOPSIS

PROJECT PROPOSAL REFERENCE NUMBER	46S_BE_3005					
TITLE OF THE PROJECT	OIL EXTRACTION BY PYROLYSIS OF PLASTIC WASTE					
DEPARTMENT	CIVIL ENGINEERING					
STUDENT NAMES	PALLAVI D P	PRAKRUTHI D	SANATH KUMAR M	VARUN P		
PROJECT GUIDE	Professor Dr S D VENKATARAJA MOHAN					
KEYWORDS	Pyrolysis, High Density Polethylene . Low Density Polyethylene					
INTRODUCTION	 Pyrolysis is the chemical decomposition of organic substances by heating the word is originally coined from Greek-derived elements pyro "fire" and lysis "decomposition". Pyrolysis is thermal degradation process in the absence or limited supply of oxygen. Plastic waste is heated in a cylindrical reactor at temperature of 300 - 350 C in the absence of oxygen. Plastic waste is very harmful to our nature and also for human beings. Plastic is not easily decomposable. Its affect in fertilization, atmosphere, mainly its harmful effect on ozone layer. So it is necessary to recycle these waste plastic into useful things. In this project we have designed a laboratory scale Pyrolysis Plant which can be used as a prototype for building larger commercial Pyrolysis plants. High Density Polyethylene (HDPE) & Low Density Polyethylene (LDPE) were used as feedstock and the yield of the liquid product has been calculated. The properties of oil extracted is encouraging as it has similar characteristics to that of Diesel and Petrol. 					

 To design and fabricate a new batch type reactor. To conduct thermal pyrolysis, optimize the process conditions to maximize the liquid product yield. To analyze the products obtained quantitatively and qualitatively and hence determine their potential a a fuel. 		
The Methodology of our project includes: Selection of Plastic Waste Materials. In order to perform our project, we selected High Density Polyethylene (HDPE) and Low Density Polyethylene because of its chemical composition which is similar to that of Diesel and Petrol and is evident in the graph below. Interference of the provide state of		

- Heating of Plastic waste in Limited supply of oxygen : For supply of heat we made use of wood fire and to measure the temperature inside the reactor we made use of K type thermocouple.
- 5. Condensation of Liquid Vapour :

Water was used as a coolant and we made use of a DC Motor to pump the water from the reservoir into the condenser and a provision was made to circulate the same water for condensing without wasting.

6. Collection of Liquid Fuel :

To transfer the oil from condenser to Oil collector we made use of braided hose pipe which can resist high temperatures.

 Comparison of Properties of fuel with Petrol and Diesel : Important fuel properties like Density, Viscosity . Specific Gravity, Flash Point, Pour Point , Fire Point, Cloud Point and Colour was compared to that of Petrol and Diesel.

RESULIS respecti	quid yield of Pyro ively. Remaining	olysis of HD products we	PE Plastics and un	nd LDPE Plas	stics were 32% and ases.
	The Testing was	Liquid done at AES	DPE of DPE OIIs Collecter Labs Nagasa	ed andra and foll	owing were the resu
	Fuel Propertie	HDPE Oil	LDPE Oil	Diesel	Petrol
1	3				
	Density	795.45 kg/m ³	530.35 kg/m ³	850 kg/m ³	720 kg/m ³
	Density Viscosity	795.45 kg/m ³ 0.775 poise	530.35 kg/m ³ 0.652 poise	850 kg/m ³ 1 to 3.97 poise	720 kg/m ³ 1,5 to 4 poise
	Density Viscosity Specific Gravity	795.45 kg/m ³ 0.775 poise 0.776	530.35 kg/m ³ 0.652 poise 0.655	850 kg/m ³ 1 to 3.97 poise 0.81 to 0.96	720 kg/m ³ 1,5 to 4 poise 0.82
	Density Viscosity Specific Gravity Flash Point (C)	795.45 kg/m ³ 0.775 poise 0.776 23	530.35 kg/m ³ 0.652 poise 0.655 24	850 kg/m ³ 1 to 3.97 poise 0.81 to 0.96 26	720 kg/m ³ 1,5 to 4 poise 0.82 22
	Density Viscosity Specific Gravity Flash Point (C) Fire Point (C)	795.45 kg/m³ 0.775 poise 0.776 23 27	530.35 kg/m³ 0.652 poise 0.655 24 28	850 kg/m ³ 1 to 3.97 poise 0.81 to 0.96 26 29	720 kg/m³ 1,5 to 4 poise 0.82 22 25
	Density Viscosity Specific Gravity Flash Point (C) Fire Point (C) Cloud Point (C)	795.45 kg/m ³ 0.775 poise 0.776 23 27 Below 2	530.35 kg/m³ 0.652 poise 0.655 24 28 Below 0	850 kg/m ³ 1 to 3.97 poise 0.81 to 0.96 26 29 2.5 to 4	720 kg/m³ 1,5 to 4 poise 0.82 22 25 1 to 3
	Density Viscosity Specific Gravity Flash Point (C) Fire Point (C) Cloud Point (C) Pour Point (C)	795.45 kg/m ³ 0.775 poise 0.776 23 23 27 Below 2 -4.5 to -5	530.35 kg/m³ 0.652 poise 0.655 24 28 Below 0 -2	850 kg/m ³ 1 to 3.97 poise 0.81 to 0.96 26 29 2.5 to 4 -2 to -12	720 kg/m³ 1,5 to 4 poise 0.82 22 25 1 to 3 -4 to -20
	Density Viscosity Specific Gravity Flash Point (C) Fire Point (C) Cloud Point (C) Pour Point (C) Colour	795.45 kg/m ³ 0.775 poise 0.776 23 23 27 Below 2 -4.5 to -5 Brown	530.35 kg/m³ 0.652 poise 0.655 24 28 Below 0 -2 Transpare nt Yellow	850 kg/m ³ 1 to 3.97 poise 0.81 to 0.96 26 29 2.5 to 4 -2 to -12 Dyed Blue	720 kg/m³ 1,5 to 4 poise 0.82 22 25 1 to 3 -4 to -20 Brown Transparent

CONCLUSION	As we compare the properties of Pyrolysis oil to those of Petrol and Diesel, the similarities are encouraging. In the coming years this type of chemical recycling will be more common all around the world due to depleting fossil fuels
SCOPE FOR FURTHER WORK	 To maximize the liquid product yield and also to improve the quality of liquid product, use of pyrolysis catalyst such as ZSM-5 is suggested. Since wood fire is not suggestible, another renewable and eco friendly source of energy should be used for heating the plastics.

